
USC Viterbi
School of Engineering

CSCI-677 Computer VisionUSC Viterbi
School of Engineering

CSCI-677 Computer Vision

Real-Time Martial Arts Gesture
Classification for Interactive Game

Control Systems
Loring Scotty Hoag and Niall Parker

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Motivation

Traditional game inputs are keyboard, controllers. But what if we could use our body? This is the problem
solved by systems like the Kinect.

Enable gaming for:

● Accessible Control
● Immersive interaction

Challenges:

● Latency
● Hardware Cost
● Hard to Discriminate across variety of human forms

The solution: Machine Learning!!!

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

http://www.youtube.com/watch?v=DzlP9neckwI

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

System Architecture

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Pose Estimation

For pose detection, we use BlazePose Lite from
MediaPipe. It gives us 33 keypoints per frame
including joints like elbows, hips, and shoulders. It's
fast enough to run in real time on a laptop CPU. We
ignore frames where visibility scores are too low —
this helps avoid false detections due to blur or
occlusion.

● MediaPipe BlazePose Lite
● 33 (x,y,z) keypoints
● ~30 FPS, CPU-friendly
● Filter out low-visibility joints

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Gesture Labels

We defined 21 gesture classes tailored to fighting game controls — covering
directional movement, basic attacks, and complex moves. Including an explicit
"idle" class was important to reduce false positives when the player isn't
performing a gesture. Each label maps to one or more key presses.

● 21 total labels
● Movement: jump, left, right, duck
● Attacks: Three types of punches and kicks
● Specials: Left and right variations of Hadouken, Shoryuken, and Tornado Kick
● Throws: One left throw, one right throw
● Other: “Idle” pose, “start”, “select” (for navigating menus)

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Dataset Collection
We collected training data by acting out each gesture while recording skeletal
landmarks. We ensured class balance and included variation in lighting and
clothing to improve generalization. Labels were validated in bulk by comparing
similarly labeled images and ensuring that “distance” was close to a mean.

● ~11,100 labeled examples

● Samples per gesture vary.
Duck: 300-400, Punches: +700 each
(Similar-looking gestures require more
samples to distinguish)

● Varying lighting, color, background

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Classifier Architecture

● 99D input (33 joints * x,y,z)
● Three hidden layers (128, 64, 32)
● ReLU + Softmax
● Output: 21 labels

The classifier is a simple three-layer feedforward MLP neural network. The input is
a 99-dimensional vector of normalized landmark coordinates. We use ReLU
activations in hidden layers and softmax on the output. This structure is fast and
lightweight — perfect for real-time performance.

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Training Procedure

We trained the model using cross-entropy loss and Adam optimizer with early
stopping. The dataset was split 80/20 for training and validation. To improve
robustness, we added small Gaussian noise to landmarks during training,
simulating variation in detection accuracy.

● Early stopping after 50 epochs
● Adam optimizer (lr=0.001)
● Cross entropy loss

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Command Mapping

● Single keys: punch → 'n'
● Held keys: move → 'a'
● Sequences: special → ['s', 'd', 'n']
● Injected using Python lib pydirectinput

Once a pose is classified, we map it to in-game actions. Some are simple taps,
others are held keys, and some are multi-step sequences. For example,
Hadouken is mapped as: [Down → Down+Forward → Forward → Punch].

These are sent via the pydirectinput Python library to simulate real hardware
input for reduced latency required by fast action games. Inputs are processed via
a command queue on a separate thread from classification for performance.

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Performance Benchmarks

Validation Accuracy: >97%

Win Rate:

Dependent on Player Skill

SNES (Original Console)
FPS: 60
Latency: 33ms - 100ms

SNES Classic
FPS: 60
Latency: 83 - 102 ms

iFighter II Turbo
FPS: 60
Latency: ~30ms,
 (detection to key press)

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Failure Cases

● Occlusion -> Missing Joints
● Fast Motion Blur
● Ambiguous Poses
● Time delay necessary for communicating with emulator

can cause missing commands

Fixes: Idle smoothing, pose filtering, state tracking

Future Fixes: model transitions, wider dataset,
larger testing space (Requires large area, esp. 2 players)

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Real Time System Flow

1. User moves → pose detected
2. Classifier labels frame
3. Label transformed into command sequence
4. Command transmitted to game
5. Game responds in ~2ms (Emulator/Hardware Dependant)

Fully immersive, no noticeable lag

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Future Work

● Multiplayer support
● Support for full character roster
● Smoother temporal models (LSTM?)
● VR/AR integration
● Larger datasets
● Integration with more games
● Game input queue rate-limiting
● Better solution for training “jump”

USC Viterbi
School of Engineering

CSCI-677 Computer Vision

Conclusion

● Full-body gesture control
● Works in real-time on CPU
● Compatible with legacy games
● No special hardware

