
iFighter II Turbo: Real-Time Martial Arts Gesture Classification for Interactive
Game Control Systems

Loring Scott Hoag Niall Parker

Abstract

We present iFighter II Turbo, a real-time computer vi-
sion system enabling body pose to control traditional video
games without specialized hardware. Using consumer we-
bcams, MediaPipe Pose estimation, and a lightweight ges-
ture classifier, we demonstrate practical low-latency input
for fast-paced games such as Street Fighter II. Our system
reliably handles movement, attacks, and complex special
moves via skeletal tracking, providing an accessible gam-
ing control method requiring only a standard camera and
CPU resources. Detailed analysis explores system latency,
classifier accuracy, robustness under occlusion, and future
improvements toward more generalized pose-based gaming
interfaces.

For a video overview of the system, see this
YouTube video: www.youtube.com/watch?v=
DzlP9neckwI

1. Introduction
Gesture-based control systems have long promised natural,
intuitive interaction between humans and machines. From
early systems like Sony’s EyeToy to Microsoft’s Kinect, ef-
forts to replace handheld controllers with body movement
highlighted both the potential and challenges of vision-
based interfaces. However, previous systems typically re-
quired expensive depth cameras or specialized sensors.

Our project investigates a cost-effective, scalable alterna-
tive: enabling real-time, full-body gesture control of a tra-
ditional 2D video game (Street Fighter II) using only con-
sumer webcams, lightweight computer vision (MediaPipe
Pose), and a simple neural network classifier. By translating
skeletal poses into low-latency keyboard inputs, we demon-
strate reliable gameplay without modifying the emulator or
needing expensive equipment.

Unlike previous work focused only on pose detection,
we emphasize end-to-end system latency, key event reliabil-
ity, and handling fast-paced, high-precision game environ-
ments. Our system supports 21 distinct gestures, including
directional movement, attacks, defensive actions, and com-
plex special move inputs (Hadouken, Shoryuken).

This work demonstrates that real-time camera-only gam-
ing interfaces are feasible today with minimal hardware and
opens the door for affordable accessible gaming solutions.

2. Related Work
Pose estimation research has advanced rapidly. OpenPose
was among the first to show reliable full-body pose esti-
mation in 2D images, but requires heavy models unsuitable
for real-time control on standard laptops. MediaPipe Pose
(Google) introduced fast single-person tracking, enabling
lightweight real-time estimation. BlazePose Lite used in
our project achieves 30 FPS even on CPUs, critical for re-
sponsiveness.

Kinect and LeapMotion demonstrated the benefits of
dedicated depth sensing, but at the cost of extra hardware
and environmental constraints (limited lighting, occlusion
problems).

In gesture-to-game applications, prior work often relied
on pre-defined gesture libraries or required frame-by-frame
dynamic time warping (DTW) matching, unsuited to high-
speed gaming.

Our project differs by:
• Using a pose classifier rather than frame matching.
• Emphasizing hardware input simulation via standard key-

board mappings.
• Achieving practical gesture-controlled gameplay without

depth data.
Earlier systems like Microsoft’s Kinect demonstrated

the potential of vision-based interfaces, but relied on ded-
icated hardware for depth sensing. OpenPose [1] pioneered
2D keypoint estimation from monocular video, while Me-
diaPipe Pose [2] achieved real-time pose extraction with
lightweight models such as BlazePose.

www.youtube.com/watch?v=DzlP9neckwI
www.youtube.com/watch?v=DzlP9neckwI


Figure 1. iFighter II Turbo’s pipeline, from player pose, to gesture detection, to game input.

LeapMotion provided fine-grained hand tracking but
limited body interaction. Traditional dynamic time warping
(DTW) approaches struggled in real-time gaming contexts
due to computational expense and lack of robustness.

Table 1 compares prior systems:

Table 1. Comparison of Pose Estimation Systems

System Real-Time? Hardware Used Here?

OpenPose No (CPU) None No
Kinect Yes Depth Camera No
MediaPipe Yes (CPU) Webcam Only Yes

3. Methodology & Approaches

Our system is designed as a modular pipeline that con-
verts live camera frames into discrete in-game commands
via pose estimation and gesture classification. Each compo-
nent—from image capture to game input—is tuned for low
latency, interpretability, and compatibility with commodity
hardware. This section describes each stage of the pipeline
in detail.

3.1. Camera Capture and Preprocessing
We use OpenCV to capture frames at a resolution of
640×480 pixels and an average frame rate of 27–30 FPS.
This resolution strikes a balance between spatial fidelity
and real-time performance on CPU-based systems. Because
OpenCV uses BGR color ordering by default, we convert
each frame to RGB before feeding it into the pose estima-
tor.

Additional preprocessing includes resizing (if needed)
and optionally cropping the frame to center the subject
when working in constrained environments. Though not re-
quired for our prototype, cropping or background subtrac-
tion may be beneficial in future versions to reduce ambient
noise or interference from surrounding motion.

3.2. Pose Detection
For skeletal pose estimation, we use MediaPipe BlazePose
Lite. BlazePose is a single-person 3D human pose model

that predicts 33 anatomical landmarks per frame, each con-
sisting of (x, y, z) coordinates and a visibility confidence
score. The model is optimized for mobile and embedded
devices and runs in real time even without GPU accelera-
tion.

Frames where critical landmarks (e.g., hips, shoulders,
knees) fall below a visibility threshold are discarded before
classification. This filters out low-quality detections due to
motion blur or poor lighting. In our system, these dropped
frames result in either no key being pressed or an ”idle” pre-
diction, depending on classifier logic and label smoothing.

3.3. Feature Preparation
For each valid frame, the 33 keypoints are extracted and
flattened into a 99-dimensional vector. To ensure robustness
across users and environments, we apply per-frame normal-
ization to these vectors:

x′ =
x− µ

σ

where µ and σ are the mean and standard deviation
across all landmark coordinates for that frame. This nor-
malization procedure reduces sensitivity to user scale, body
proportions, and camera distance, making it possible to gen-
eralize across different players and environments without
explicit calibration.

While this frame-by-frame normalization sacrifices
some absolute spatial consistency across frames, it proved
effective in maintaining high classification accuracy.

3.4. Gesture Classification
The core of our system is a neural network classifier imple-
mented in PyTorch. The model is a feed-forward architec-
ture composed of fully connected layers:

Our PyTorch feed-forward model has:
• Input: 99D
• Hidden layers: 128 (ReLU), 64 (ReLU), 32 (ReLU)
• Output: 21D (softmax over gesture labels)

The network outputs a probability distribution across all
gesture classes. We use the class with the highest softmax
score as the predicted label for each frame, with optional
temporal smoothing applied at runtime to improve consis-
tency.



Figure 2. Training Accuracy

Training was performed using the Adam optimizer with
a learning rate of 0.001 and cross-entropy loss. We applied
early stopping with a patience of five epochs based on vali-
dation loss to avoid overfitting. The dataset was split 80/20
into training and validation sets, with on-the-fly Gaussian
noise augmentation to improve generalization under live in-
put jitter.

In total, the model has relatively few trainable param-
eters, which enables it to operate seamlessly in real-time
without GPU acceleration, even when integrated into a live
game loop.

3.5. Game Control Integration
Classified gestures map to:
• Single key presses (e.g., light punch)
• Held directional keys (e.g., crouch)
• Key sequences (e.g., Hadouken motion: down,

down+forward, forward, punch)
In addition to the gameplay moves, there were also three

utility poses: ”idle”, ”select”, and ”start”. The former is
used as a neutral pose to increase accuracy, while the latter
two are used for navigating menus.

Key injection uses the pydirectinput Python library
for hardware-level control. This is to bypass the additional
latency introduced by passing keys through the operating
system input layer. Key commands are added to a queue
and sent on an external thread to separate key injection logic
from gesture detection logic and improve performance.

4. Experiments
4.1. Dataset Collection
We recorded approximately 11,100 total gesture samples
across 21 distinct labels (19 gameplay commands, and 2
menu control commands). Each label represents a unique
in-game action such as directional movement, attack types,
or special-move triggers. Per-class sample counts ranged
from 300 to 700, depending on the complexity and repro-
ducibility of the gesture.

Figure 3. Pipeline: from webcam capture to key event injection.

The dataset was collected in multiple sessions with var-
ied lighting, clothing, and movement speeds. Idle poses
were explicitly labeled and collected to ensure the model
could robustly detect ”non-action” states and suppress false
positives.

To collect the samples, we wrote a data collection
pipeline into the iFighter II Turbo system. Users can en-
ter ”Capture” mode to record samples for a given label.
Samples acquired this way are automatically filed into the
dataset hierarchy and included in all future training steps.

To ensure intra-class consistency and reduce the pres-
ence of mislabeled or noisy data, we developed a
lightweight validation script. This script computed the av-
erage Euclidean distance between landmark vectors within
each class and flagged outliers whose intra-class distance
exceeded a configurable threshold. This allowed us to semi-
automatically detect mislabeled or misperformed gestures,
which were then manually reviewed or removed. This pro-



cess helped to improve class cohesion and model general-
ization by ensuring that each labeled set represented a con-
sistent physical motion.

For each gesture class, the performer repeated the pose
with intentional variation: different arm angles, slight torso
shifts, changes in pacing, and subtle camera repositioning.
This was critical for improving model robustness, particu-
larly under minor occlusion, noise, or body shape changes.
We emphasized capturing the transitions into and out of ges-
tures, ensuring that the dataset was not composed purely of
static poses but included real human variation.

Additionally, we applied Gaussian noise augmentation
to the training data during preprocessing. Small amounts
of jitter were added to the (x, y, z) landmark coordinates,
simulating the kinds of detection noise that can occur dur-
ing real-time pose estimation due to lighting changes, mo-
tion blur, or transient occlusions. This helped the model
become more resilient to imperfect landmark detection and
improved generalization on live webcam input.

Overall, our dataset collection strategy emphasized bal-
ance, variation, and validation. By combining semi-
automated filtering with pose-aware data augmentation, we
constructed a training set that accurately reflected real-
world operating conditions while maintaining high label fi-
delity and internal consistency.

4.2. Metrics
Performance metrics include:
• Pose classification accuracy (train/validation)
• Input-to-action latency
• Special move success rates during gameplay

4.3. Results

Table 2. Performance Metrics

Metric Value

Training Accuracy >97%
Validation Accuracy >97%
Average Input Latency 30 ms

Table 3. Comparable System Metrics

System FPS Latency (ms)

Our System 60 30
SNES Original Console 60 33-100
SNES Classic 60 83-102

4.4. Qualitative Observations
Movement gestures were detected reliably. Complex ges-
tures like Hadouken had high success provided sufficient

Figure 4. Punch Labeled and Annotated

stability during pose performance. Failure cases mainly
stemmed from occlusion, fast motion blur, or poor lighting.

4.5. System Robustness
While our system performs well under ideal conditions, sev-
eral practical challenges emerged in real-world testing. One
key limitation is pose occlusion: if key joints like shoulders
or hips are blocked—by a raised arm, clothing, or edge-
of-frame—the pose detector either drops them or degrades
accuracy significantly. This issue becomes especially pro-
nounced during complex gestures such as jump attacks or
rapid dodges.

Fast motion blur is another contributing factor. Rapid
movements can introduce blur in webcam frames, which re-
duces keypoint visibility and increases the risk of misclassi-
fication. We also encountered ambiguity between poses that
are visually similar in silhouette (e.g., crouching vs. leaning
forward), especially when viewed from oblique angles.

A less obvious but impactful limitation arises from
the emulator communication pipeline. Due to the over-
head of injecting keypresses and the strict timing require-
ments of certain games, we observed occasional dropped



Figure 5. Example of a Misclassification

inputs—especially for multi-key sequences like special
moves. On the flip side, we also observed times when the
input was too fast for the emulator, and multiple moves got
sent before the emulator could process. This necessitated
careful control over timing and smoothing logic.

To address these issues, we introduced frame-to-frame
pose filtering, label smoothing, and state tracking. These
mechanisms reduce flicker and prevent rapid switching be-
tween gestures unless they are consistently held over a short
time window. Nonetheless, additional improvements are
needed to close the gap for high-speed gesture transitions
and edge cases like jumping.

4.6. Future Improvements
Several promising directions remain for improving the sys-
tem’s performance, robustness, and general applicability.
First, we aim to expand the dataset with more users, light-
ing conditions, and camera positions to improve generaliza-
tion. In particular, collecting gestures from a larger physical
space and multiple viewing angles would better support dy-
namic moves like jumping, spinning, and full-body turns.

Temporal modeling is another avenue for enhancement.
While our current classifier operates frame-by-frame, in-
corporating temporal models such as LSTMs or temporal
convolutions could allow the system to learn transitions be-
tween gestures, improving stability and responsiveness in
continuous motion.

Multiplayer support is also on the roadmap. This would
require either multiple cameras or multi-person tracking
support layered over the pose estimator, along with logic
to assign detected poses to individual players.

Another obvious shortcoming is the current support for
only a single playable character. Fighting games often have
large rosters covering different play styles. Even in games
with a single playable character, it is common to have dif-

ferent ”player states” that change the control options avail-
able to the player. Controlling other characters could be
accomplished by sharing a set of ”common” gestures that
are used by all characters (Movement, basic attacks, throws,
idles), and swapping out the unique special move gestures
for each character’s move set. Additional gesture samples
would need to be acquired for each unique character special
move, and then a separate MLP could be trained for each
character or controllable player state.

One particular difficulty with the system as designed is
the disconnect between the exaggerated physical actions
that many game characters perform and real-world physical
poses that players can actually perform. It is not difficult
for a player to mimic throwing a chi fireball and hold vari-
ations of that pose for sample collection, but much more
difficult for players to hold a pose of a flying hurricane
kick. Some game character actions are so cartoonish as to
be physically impossible to mimic with real-world physics.
A flying hurricane kick may easily be substituted with an
easier to perform martial arts kick, but other jumping ac-
tions are very difficult or impossible to ”hold” for training
purposes. Substituting actions is sub-optimal as the ideal
player experience would be to mimic the game character’s
actions as closely as physically possible. This factor of the
system’s design will need to be revisited and rethought in
future work.

Additional ambitions include integrating with a broader
set of games, and exploring VR/AR compatibility for more
immersive input.

Finally, specific technical refinements could greatly im-
prove user experience, such as implementing input queue
rate-limiting to avoid command spam, fine-tuning gesture
timing sensitivity for edge cases like “jump,” and enabling
more flexible mappings for different game engines or input
systems.

5. Conclusion
We demonstrate that real-time, full-body pose control of
legacy video games is achievable with only commodity we-
bcams and modern pose estimation. Our system achieves
strong accuracy and low latency, enabling competitive play
in a fast-paced environment like Street Fighter II. Future
work can broaden application to accessibility tech and im-
mersive VR gaming.

This project demonstrates that real-time, full-body
gesture-based control of traditional video games is not
only feasible, but practical using modern pose estima-
tion models and commodity hardware. Leveraging Me-
diaPipe Pose for fast skeletal landmark extraction, com-
bined with a lightweight PyTorch classifier, we success-
fully replaced keyboard-based game input with body pose-
driven commands. Our system reliably detects 21 distinct
gestures, maps them to game actions, and injects them



into a commercial emulator with sub-150ms end-to-end la-
tency—enabling real-time gameplay even in fast-paced en-
vironments such as Street Fighter II.

The system meets the original research objectives by
providing an accessible, low-cost, camera-only interaction
mechanism for legacy games. Through structured architec-
ture, robust data collection, and consistent pose-label map-
ping, we achieved validation accuracy approaching 88%,
with real-world gameplay success rates for complex moves
(e.g., Hadouken) over 75%. We also demonstrated how sim-
ple model smoothing techniques and input timing strategies
could significantly improve practical usability and reduce
false positives, making the system robust under real-world
variation such as lighting changes and fast motion.

Our key contributions to the field of robotic perception
and human-computer interaction include: (1) a novel ap-
plication of pose estimation for precise, real-time input in
constrained timing environments, (2) a gesture dataset and
labeling workflow optimized for high inter-class separabil-
ity, and (3) a complete input pipeline bridging body motion
to emulator-compatible keypresses without modifying the
underlying game code.

Despite these successes, several limitations emerged.
The current system is limited to single-person tracking and
performs best in controlled environments. Occlusions, mo-
tion blur, and spatial constraints can lead to misclassifica-
tions or input dropouts. Furthermore, the fixed label set,
while effective for one character, does not yet generalize
across varied characters or player strategies. The classifier
operates frame-by-frame and lacks explicit temporal mod-
eling, which could smooth transitions or improve accuracy
for dynamic motions such as jumping.

Looking forward, there are several promising directions
for future work. Temporal models such as LSTMs or
transformers could improve gesture consistency and enable
multi-frame sequence recognition. Expanding the dataset
across multiple users, environments, and movement styles
would increase robustness and generalizability. Multi-
player support and multi-character mapping are also nat-
ural extensions. Finally, integration into VR/AR systems or
rehabilitation applications could unlock new interfaces for
accessible, embodied computing using only a camera and a
neural model.

In summary, our project bridges the gap between pas-
sive pose estimation and active gesture control, showcasing
a compelling example of how modern vision systems can be
applied to interactive, timing-sensitive domains with mini-
mal hardware overhead.

References
[1] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.

Sheikh. Openpose: Realtime multi-person 2d pose estima-

tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019. 1

[2] Google. Media pipe. https://github.com/google-
ai-edge/mediapipe, 2025. 1

https://github.com/google-ai-edge/mediapipe
https://github.com/google-ai-edge/mediapipe

	Introduction
	Related Work
	Methodology & Approaches
	Camera Capture and Preprocessing
	Pose Detection
	Feature Preparation
	Gesture Classification
	Game Control Integration

	Experiments
	Dataset Collection
	Metrics
	Results
	Qualitative Observations
	System Robustness
	Future Improvements

	Conclusion

